Matrix product state representation without explicit local Hilbert space truncation with applications to the sub-ohmic spin-boson model

نویسندگان

  • Max F Frenzel
  • Martin B Plenio
چکیده

We present an alternative to the conventional matrix product state representation, which allows us to avoid the explicit local Hilbert space truncation many numerical methods employ. Utilizing chain mappings corresponding to linear and logarithmic discretizations of the spin-boson model onto a semi-infinite chain, we apply the newmethod to the sub-ohmic spin-boson model. We are able to reproduce many well-established features of the quantum phase transition, such as the critical exponent 12 predicted by mean-field theory. Via extrapolation of finite-chain results, we are able to determine the infinitechain critical couplings αc at which the transition occurs and, in general, study the behaviour of the system well into the localized phase. 3 Author to whom any correspondence should be addressed. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. New Journal of Physics 15 (2013) 073046 1367-2630/13/073046+13$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of the sub-Ohmic spin-boson model: a comparison of three numerical approaches.

Dynamics of the sub-Ohmic spin-boson model is examined using three numerical approaches, namely the Dirac-Frenkel time-dependent variation with the Davydov D(1) ansatz, the adaptive time-dependent density matrix renormalization group method within the representation of orthogonal polynomials, and a perturbative approach based on a unitary transformation. In order to probe the validity regimes o...

متن کامل

Numerical renormalization group for quantum impurities in a bosonic bath

We present a detailed description of the recently proposed numerical renormalization group method for models of quantum impurities coupled to a bosonic bath. Specifically, the method is applied to the spin-boson model, both in the Ohmic and sub-Ohmic cases. We present various results for static as well as dynamic quantities and discuss details of the numerical implementation, e.g., the discreti...

متن کامل

On the spin–boson model with a sub–Ohmic bath

We study the spin–boson model with a sub–Ohmic bath using infinitesimal unitary transformations. Contrary to some results reported in the literature we find a zero temperature transition from an untrapped state for small coupling to a trapped state for strong coupling. We obtain an explicit expression for the renormalized level spacing as a function of the bare papameters of the system. Further...

متن کامل

Sparse polynomial space approach to dissipative quantum systems: application to the sub-ohmic spin-boson model.

We propose a general numerical approach to open quantum systems with a coupling to bath degrees of freedom. The technique combines the methodology of polynomial expansions of spectral functions with the sparse grid concept from interpolation theory. Thereby we construct a Hilbert space of moderate dimension to represent the bath degrees of freedom, which allows us to perform highly accurate and...

متن کامل

A variational surface hopping algorithm for the sub-Ohmic spin-boson model.

The Davydov D1 ansatz, which assigns individual bosonic trajectories to each spin state, is an efficient, yet extremely accurate trial state for time-dependent variation of the sub-Ohmic spin-boson model [N. Wu, L. Duan, X. Li, and Y. Zhao, J. Chem. Phys. 138, 084111 (2013)]. A surface hopping algorithm is developed employing the Davydov D1 ansatz to study the spin dynamics with a sub-Ohmic bos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013